
QUESTION DE COURS

REACTIONS REDOX, PILES ET ELECTROLYSE

CORRIGE

I 1 la pile Daniell

1.a) -
$$Zn / Zn^{2+} / Cu^{2+} / Cu +$$
 0,5

schéma	2
a) pôles bien placés	0,5
b) sens e- et I	0,5
c) déplacement des ions	1
d) anode, cathode	1

2a)A l'électrode positiveA l'électrode négative	$Zn \rightarrow Zn^{2+} + 2e^{-}$ $Cu^{2+} + 2e^{-} \rightarrow Cu$	1 1
2.b)		
l'álastrada positiva : la asthada		0.4

l'electrode positive : la cathode	0,5
l'électrode négative : l'anode	0,5

2.c)

Equation de la réaction $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$ 0,5

3.
Une application usuelle : les accumulateurs ou les batteries rechargeables
Une application industrielle : purification des métaux ou protection contre

la corrosion 1

4.	
Schéma (page 233 du manuel)	1
Sens des électrons :	0,5
Sens des ions :	0,5
Anode et cathode	1
5.a) A la cathode il y a réduction	1
5.b) On obtient un dépôt d'argent	0,5
$\mathbf{5.c)} \ \mathbf{Ag}^+ + \mathbf{e}^- \to \mathbf{Ag}$	1
5.d) A l'anode il y a oxydation	1
5.e) On a un dégagement gazeux de O ₂	0,5
5.f) $H_2O \rightarrow 1/2O_2 + 2H^+ + 2e^-$	1
5.g) $2Ag^{+} + H_{2}O \rightarrow 1/2O_{2} + 2H^{+} + Ag^{+}$	1

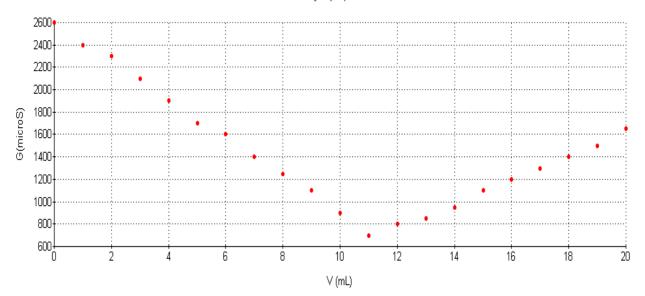
EXERCICE A CARACTERE EXPERIMENTAL

ACIDE-BASE ET CONDUCTIMETRIE

CORRIGE

- 1.a) L'équation de la réaction : H₃O⁺ + OH⁻ → 2 H₂O
 1.b) La réaction doit faire disparaitre au moins un des deux réactifs
 1
- 2.a) Le schéma annoté doit comporter :
- une burette avec sa solution de NaOH
- un conductimètre avec la cellule
- un bécher contenant la solution d'acide chlorhydrique
- un agitateur magnétique

2


2.b) La courbe expérimentale

3

NOTA BENE : certains points ont été retirés de la proposition initiale qui en comportait trop. C'est pourquoi la courbe ci-dessous diffère de ce que les élèves pourront tracer.

Dosage conductimétrique

acide chlorhydrique par NaOH

- **2.c**) La courbe expérimentale $G = f(V_B)$ présente deux parties distinctes :-avant l'équivalence : il reste en solution des ions Na^+ apportés par NaOH, des ions H_3O^+ pas complètement dosés, des ions Cl^- des ions OH^- issus de l'autoprotolyse. Les ions Cl^- sont indifférents au sens où ils participent effectivement à la conductivité de la solution, mais leur quantité n'évolue pas. Les ions OH^- sont ultra-minoritaires. donc la disparition d'ions H_3O^+ et l'apport progressif d'ions Na^+ . On peut observer que la conductance G diminue: la disparition d'ions H_3O^+ l'emporte sur, Na^+ , car $\lambda(H_3O^+,) > \lambda(Na^+,)$.
- -à l'équivalence : la conductance G de la solution est minimale.
- -après l'équivalence : tous les ions H_3O^+ ont été titrés. L'excès de NaOH se traduit par une augmentation de Na^+ et OH^- qui contribuent à la conductivité, la conductance G augmente.

2

3.a) $V_E = 11 \text{ mL et } G_E = 700 \text{ }\mu\text{S}$

1

3.b) La courbe expérimentale $G = f(V_B)$, formée de deux segments de droites, présente deux parties distinctes. Il faut trouver l'intersection de ces droites qui permet de repérer l'équivalence. 1 **4.a)** A l'équivalence : $n(OH^-)$ versé = $n(H_3O^+)$ initial 1 **4.b**) $C_1 \times V_1 = C_B \times V_E$ 1 **4.c**) $C_1 = C_B \times V_E / V_1 = 1,00 \times 10^{-1} \times 11 / 100 = 11 \times 10^{-3} \text{ mol.L}^{-1}.$ 1,5 **4.d**) On a dilué 1000 fois la solution S_0 donc $C_0 = 1000 \times \underline{C_1} = 11 \text{ mol.L}^{-1}$ 1 4.e) La conductance, donc la conductivité d'une solution est proportionnelle aux concentrations pourvu que les concentrations ne soient pas trop grandes. La solution commerciale est donc trop concentrée pour être titrée directement par cette méthode 1,5 5.a) Conductivité d'une solution d'acide chlorhydrique : $\sigma = \lambda(Cl^{-}) \times [Cl^{-}] + \lambda(H_{3}O^{+}) \times [H_{3}O^{+}]$ 0,5 mais comme $[Cl^-] = [H_3O^+]$ 0,5 $\sigma = \{ \lambda(C1^-) + \lambda(H_3O^+) \} \times [H_3O^+]$ 0,5 **5.b**) Conductivité de $S_1 : 0.5 \text{ S.m}^{-1}$ (! $[H_3O^+]$ en mol.m⁻³!) 0,5 **6.a**) Dans un volume V = 1 L de solution, la quantité d'ions H_3O^+ est : $n_0 = C_0 \times V = C_0 \times 1$ $\underline{\mathbf{n}_0} = 11 \text{ mol}$ 1 La masse m₀ d'acide chlorhydrique est : $m_0 = n_0 \times M_{(HCl)} = C_0 \times V \times M_{(HCl)} = 11 \times 1 \times 36,5 = 401,5 \text{ g.L}^{-1}$ 1,5 **6.b**) Un litre de solution pèse $m = \rho_0 \times 1 = \underline{1160}$ g. 1 **6.c)** Le pourcentage en masse est donc : $m_0 / m \times 100 = 401.5 / 1160 = 34.6 \%$ 1 L'indication de l'étiquette du flacon est correcte. 0,5 **6.d**) $V = n_0 \times V_m$ $V = 11 \times 22, 4 = 246 L$ 1

PROBLEME

1.a) 1.b)	C_nH_{2n} $12.n+2.n=56$; $14.n=56$ donc $n=4.$ La formule brute de A est C_4H_8 1	0,5
1.c)	CH ₃ -CH=CH-CH ₃ but-2-ène CH ₃ -CH ₂ -CH=CH ₂ but-1-ène	1 1
2.a) 2.b) 2.c)	D est une cétone (2,4-DNPH + et Fehling -) E est un acide carboxylique (le pH de sa solution aqueuse est acide) B et C sont des alcools (leurs produits d'oxydation sont cétone et acide carboxylique) CH ₃ -CH=CH-CH ₃ ne donne qu'un seul alcool par hydratation donc : A = CH ₃ -CH ₂ -CH=CH ₂ but-1-ène	0,5 0,5 0,5
2.d)	B = CH ₃ -CH ₂ -CHOH-CH ₃ butan-2-ol C = CH ₃ -CH ₂ -CH ₂ -CH ₂ OH butan-1-ol D = CH ₃ -CH ₂ -CO-CH ₃ butan-2-one E = CH ₃ -CH ₂ -COOH acide butanoïque CH ₃ -CH ₂ -CHOH-CH ₃ \rightarrow CH ₃ -CH ₂ -CO-CH ₃ + 2H ⁺ + 2e ⁻ ×3 Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e- \rightarrow 2Cr ³⁺ + 7H ₂ O ×1 3CH ₃ -CH ₂ -CHOH-CH ₃ + Cr ₂ O ₇ ²⁻ + 8H ⁺ \rightarrow 3CH ₃ -CH ₂ -CO-CH ₃ + 2Cr ³⁺ + 4H ₂ O	1 1 1 1 0,5
3.a) 3.b) 3.c) 3.d)	F est un ester (réaction d'un acide carboxylique avec un alcool) $CH_3\text{-} CH_2\text{-}CH_2\text{-}COO\text{-}CH_2\text{-}CH_2\text{-}CH_3 butanoate de butyle}$ $Estérification$ $CH_3\text{-}CH_2\text{-}COO\text{-}CH_2\text$	0,5 1 0,5 0,5
4.a) 4.b)	$C_nH_{2n+1}Cl$ % $Cl = \frac{1 \times M_{Cl}}{M} \times 100 \text{ d'où } M = (35,5/38,4) \times 100 \text{ ; } M = 92,5 \text{ g.mol}^{-1}$	1
4.c) 4.d)	12.n + 2.n +1 + 35,5 = 92,5 donc n = 4. La formule brute de Z est C ₄ H ₇ Cl CH ₃ -CH ₂ -CHCl-CH ₃ 2-chlorobutane CH ₃ -CH ₂ -CH ₂ -CH ₂ Cl 1-chlorobutane (CH ₃) ₂ -CH-CH ₂ Cl 1-chlorométhylpropane (CH ₃) ₃ -CCl 2-chlorométhylpropane	1 1 1 1
5.a) 5.b) 5.c) 5.d) 5.e)	Y est un alcool tertiaire car il n'est pas oxydé par une solution acidifiée de dichromate de potassium en excès $(CH_3)_3$ -COH méthylpropan-2-ol Z est le 2-chlorométhylpropane $(CH_3)_3$ -CCl L'acide chlorhydrique concentré $(CH_3)_3$ -COH + HCl \rightarrow $(CH_3)_3$ -CCl + H ₂ O	1 1 1 0,5 0,5

EXPLOITATION DE DOCUMENT

LA CHIMIE AU SERVICE DES ENQUETES POLICIERES

CORRIGE

1.	explosions, traces, résidus – 4 suffisent	2 points
2.	la chromatographie	1 point
3.	nitrate d'argent pour les surfaces poreuses différentes poudres pour les surfaces non poreuses	2 points
4.	l'héroïne et une drogue synthétique du type exctasy	2 points
5.	des dérivés nitrés	1 point
6.	Non. Il en faut davantage - au moins quelques milligrammes.	2 points

QUESTIONNAIRE À CHOIX MULTIPLES

CORRIGÉ

1. b	6. b	11. b	16. d
2. d	7. c	12. d	17. a
3. c	8. c	13. a	18. c
4. c	9. d	14. a	19. c
5. c	10. d	15. b	20. b